As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Constraint Satisfaction Problems (CSPs) are well known models used in Artificial Intelligence. In order to represent real world systems, CSPs have been extended to Dynamic CSPs (DCSPs), which support adding and removing constraints at runtime. Some approaches to the NP-complete problem of solving CSPs use filtering techniques such as arc consistency, which also have been adapted to handle DCSPs with binary constraints. However, there exists only one algorithm targeting non-binary DCSPs (DnGAC4). In this paper we present a new algorithm DnSTR for maintaining arc consistency in DCSPs with non-binary constraints. Our algorithm is based on Simple Tabular Reduction for Table Constraints, a technique that dynamically maintains the tables of supports within the constraints. Initial results show that our algorithm outperforms DnGAC4 both for addition and removal of constraints.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.