As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Navigation and an agent’s map representation in a multi-agent system become problematic when agents are situated in complex environments such as the real world. Challenging modifiability of maps, long updating period, resource-demanding data collection makes it difficult for agents to keep pace with rather quickly expanding cities. This study presents the first steps to a possible solution by exploiting natural language processing and symbolic methods of supervised machine learning. An adjusted algorithm processes formalized descriptions of one’s journey to produce a description of the journey. The explication is represented employing Transparent Intensional Logic. A combination of several explications might be used as a representation of spatial data, which may help the agents to navigate. Results of the study showed that it is possible to obtain a topological representation of a map using natural language descriptions. Collecting spatial data from spoken language may accelerate updating and creation of maps, which would result in up-to-date information for the agents obtained at a rather low cost.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.