As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Critical infrastructure, military or civil equipment, buildings, and Light Armored Vehicles (LAV) can be exposed to blast and ballistic loading during their lifetime. Such loads can cause large deformations and stresses within a very short period of time. For that purpose, it is necessary to examine and improve their response to these high-intensity and short-term loads. The analytical approaches are complex, the performance of large-scale experimental tests is extremely expensive since it involves a number of experts, special legal permits, and safety requirements which makes numerical analysis the most valuable examination tool. On the other side, a precise numerical analysis requires precise material properties, to describe the material behavior under various conditions. Before analyzing the response of structures under blast loads, the numerical model should be carefully validated first. This paper presents the validation results of the numerical model of small-scale explosion tests of charges laid on the ground or buried in the soil. The numerical results for time of arrival, maximum pressure, and specific impulse are compared with the experimental results showing a good correlation. The influence of depth of burial (DoB) on blast wave development and soil ejecta formation and loading parameters is investigated in detail.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.