As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recent research advances on fabric dyeing have focused on modeling the relationship between dye concentrations and the final color on fabrics. The emerging techniques in related studies have great potential to evolve the traditional dyeing industry to manufacture much more smartly. Given that dyeing is a complex process regulated by many factors, one of the challenging problems in the aforementioned techniques is to maintain the modeling accuracy at acceptable level. Other than developing high-performance algorithms and model architectures, it is also important to include effective data pre-processing techniques in modeling. In this paper, we show that conducting log-transform to the industrial dyeing data can greatly improve the performance of industrial dyeing recipe models. Such observations are confirmed on modeling tasks using different formats of color as input and different types of loss function in the model training. These findings may provide useful implications for related studies for the dyeing industry.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.