As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Machine learning has improved significantly during the past decades. Computers perform remarkably in formerly difficult tasks. This article reports the preliminary results on the prediction of two characteristics of judgments of the European Court of Justice, which require the knowledge of concepts and doctrines of European Union law and judicial decision-making: The legal importance (doctrinal outcome) and leeway to the national courts and legislators (deference). The analysis relies on 1704 manually labelled judgments and trains a set of classifiers based on word embedding, LSTM, and convolutional neural networks. While all classifiers exceed simple baselines, the overall performance is weak. This suggests first, that the models learn meaningful representations of the judgments. Second, machine learning encounters significant challenges in the legal domain. These arise doe to the small training data, significant class imbalance, and the characteristics of the variables requiring external knowledge.
The article also outlines directions for future research.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.