As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Legal text summarization is generally formalized as an extractive text summarization task applied to court decisions from which the most relevant sentences are identified and returned as a gist meant to be read by legal experts. However, such summaries are not suitable for laymen seeking intelligible legal information. In the scope of the JusticeBot, a question-answering system in French that provides information about housing law, we intend to generate summaries of court decisions that are, on the one hand, conditioned by a question-answer-decision triplet, and on the other hand, intelligible for ordinary citizens not familiar with legal documents. So far, our best model, a further pre-trained BARThez, achieves an average ROUGE-1 score of 37.7 and a deepened manual evaluation of summaries reveals that there is still room for improvement.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.