As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Sequential learning is that discipline of machine learning that deals with dependent data. In this paper, we use the Multi-scale Stacked Sequential Learning approach (MSSL) to solve the task of pixel-wise classification based on contextual information. The main contribution of this work is a shifting technique applied during the testing phase that makes possible, thanks to template images, to classify objects at different sizes. The results show that the proposed method robustly classifies such objects capturing their spatial relationships.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.