As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this work, the wavelet transformation (WT) under the context of convolution neural network (CNN) is developed and applied for breast cancer detection. The main objective is to investigate the effectiveness of the WCNN pooling architecture when compared to other two famous pooling strategies; max and average pooling, particularly targeting at the features extraction and classifying the phases of breast cancer by avoiding the under and overfitting problems. It is discovered in this work that the combination of WT and CNN outperforms the traditional and typical CNNs (with 96.49% of accuracy 95.81% of precision, 96.73% of recall and 96.23% of F measure).
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.