As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recommendation systems leverage product and community information to target products to consumers. Researchers have developed collaborative recommendation systems, content-based recommendation systems and a few hybrid systems. We propose a semantic framework to overcome common limitations of current systems. We present a system whose representations of items and user-profiles are based on concept taxonomies in order to provide personalized recommendation and services. The recommender incorporates semantics to enhance (1) user modeling by applying a domain-based inference method, and (2) recommendation by applying a semantic-similarity method. We show that semantics can often be used to overcome information scarcity. Experiments on movie-data from Netflix show that systems incorporating semantics produce significantly better quality recommendations than content-based ones.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.