As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Argumentation can be used by a group of agents to discuss about the validity of hypotheses. In this paper we propose an argumentation-based frame-work for multiagent induction, where two agents learn separately from individual training sets, and then engage in an argumentation process in order to converge to a common hypothesis about the data. The result is a multiagent induction strategy in which the agents minimize the set of examples that they have to exchange (using argumentation) in order to converge to a shared hypothesis. The proposed strategy works for any induction algorithm which expresses the hypothesis as a set of rules. We show that the strategy converges to a hypothesis indistinguishable in training set accuracy from that learned by a centralized strategy.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.