As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Deep learning based intrusion detection system has acquired prominence in digital protection frameworks. The fundamental component of such a framework is to give an assurance to the ICT foundation in the interruption recognition framework (IDS). Wise arrangements are exceptionally essential and expected to control the intricacy and identification of new assault types. The smart frameworks, for example, Deep learning and Machine learning have broadly been acquainted with its advantages with actually manage intricate and layered information.The IDS has various types of known and unknown attacks, however there is a chance to improve the detection of attacks on implementing in real case scenario. Thus, this paper proposes a hybrid deep learning technique that combines convolutional neural network model with Long short term memory model to improvise the performance in recognizing the anomaly packets in the network. Experimentation has been carried out with NSL KDD dataset and the performances are compared with the traditional machine and deep learning models in terms of common metrics such as accuracy, sensitivity and specificity.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.