As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents an approach for analysing food-porn images and their related comments published by the cooking school Getcookingcanada Instagram account. Our approach processes the published images to extract colour parameters, counts the number of likes, and also analyses the comments related to each publication. A dataset containing all these was built, and methods were applied to study correlations among the data: a regression analysis, an ANOVA and a sentiment analysis of the comments on the dataset to explain the relation between the quantity of likes and the sentiment obtained from the food images. Our results show a correlation between the number of likes and the sentiment analysis of the comments. Images that evoke a positive sentiment have a higher number of likes and comments. Users’ experience on creating posts is also analysed and confirms a positive correlation between the number of likes and the publisher’s experience.