As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We define a new MaxSAT tableau calculus based on resolution. Given a multiset of propositional clauses ϕ, we prove that the calculus is sound in the sense that if the minimum number of contradictions derived among the branches of a completed tableau for ϕ is m, then the minimum number of unsatisfied clauses in ϕ is m. We also prove that it is complete in the sense that if the minimum number of unsatisfied clauses in ϕ is m, then the minimum number of contradictions among the branches of any completed tableau for ϕ is m. Moreover, we describe how to extend the proposed calculus to solve Weighted Partial MaxSAT.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.