As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Sentences where two verbs share a single argument represent a complex and highly ambiguous syntactic phenomenon. The argument sharing relations must be considered during the detection process from both a syntactic and semantic perspective. Such expressions can represent ungrammatical constructions, denoted as zeugma, or idiomatic elliptical phrase combinations. Rule-based classification methods prove ineffective because of the necessity to reflect meaning relations of the analyzed sentence constituents.
This paper presents the development and evaluation of ZeugBERT, a language model tuned for the sentence classification task using a pre-trained Czech transformer model for language representation. The model was trained with a newly prepared dataset, which is also published with this paper, of 7,849 Czech sentences to classify Czech syntactic structures containing coordinated verbs that share a valency argument (or an optional adjunct) in the context of coordination. ZeugBERT here reaches 88% of test set accuracy. The text describes the process of the new dataset creation and annotation, and it offers a detailed error analysis of the developed classification model.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.