As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Machine learning based disease classification have already achieved amazing results in medicine: for example, models can find a tumor in computer tomography images at least as accurately as experts in the field. Since the development and widespread use of actigraphy watches, activity data has been used as a basis for diagnosing various diseases such as depression or Alzheimer’s disease. In this study, we use a dataset with activity measurements of mentally ill and healthy people, calculate various features and achieve a classification accuracy of over 78%. The paper describes and motivates the used features, discusses differences between healthy, bipolar 2 and unipolar participants and compares several well-known machine learning classifiers on different classification tasks and with different feature sets.