As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The SARS-CoV-2 pandemic has galvanized the interest of the scientific community toward methodologies apt at predicting the trend of the epidemiological curve, namely, the daily number of infected individuals in the population. One of the critical issues, is providing reliable predictions based on interventions enacted by policy-makers, which is of crucial relevance to assess their effectiveness. In this paper, we provide a novel data-driven application incorporating sub-symbolic knowledge to forecast the spreading of an epidemic depending on a set of interventions. More specifically, we focus on the embedding of classical epidemiological approaches, i.e., compartmental models, into Deep Learning models, to enhance the learning process and provide higher predictive accuracy.