As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Chronic diseases pose significant challenges to patients and healthcare systems, and the COVID-19 pandemic has further deteriorated that situation. This paper presents a method for predicting selected long COVID conditions in chronic and multimorbidity patients. It produces a logistic regression model for each long COVID condition by examining electronic medical records (EMRs) of COVID-19 patients and taking their chronic conditions as predictors. The models were developed and tested using the Jumpstart EMR database, provided in the COVID-19 Research Environment of Hopkins University, containing about 250,000 EMRs of the outpatient and ambulatory COVID-19 patients across the US. They are illustrated by predictions of 20 prevalent acute and chronic long-COVID conditions in patients diagnosed with frequent pre-COVID chronic diseases. These models can aid in investigating long COVID impacts on various chronic patients, finding their underlying pathophysiology, and establishing guidelines for their treatment and prevention.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.