As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Log data, captured during use of mobile health (mHealth) applications by health providers, can play an important role in informing nature of user engagement with the application. The log data can also be employed in understanding health provider work patterns and performance. However, given that these logs are raw data, they require robust cleaning and curation if accurate conclusions are to be derived from analyzing them. This paper describes a systematic data cleaning process for mHealth-derived logs based on Broeckâs framework, which involves iterative screening, diagnosis, and treatment of the log data. For this study, log data from the demonstrative mUzima mHealth application are used. The employed data cleaning process uncovered data inconsistencies, duplicate logs, missing data within logs that required imputation, among other issues. After the data cleaning process, only 39,229 log records out of the initial 91,432 usage logs (42.9%) could be included in the final dataset suitable for analyses of health provider work patterns. This work highlights the significance of having a systematic data cleaning approach for log data to derive useful information on health provider work patterns and performance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.