As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Post-harvest fruit grading is a necessary step to avoid disease related loss in quality. In this paper, a hierarchical method is proposed to (1) remove the background and (2) detect images that contains grape diseases(botrytis, oidium, acid rot). Satisfying segmentation performances were obtained by the proposed Lite Unet model with 92.9% IoU score and an average speed of 0.16s/image. A pretrained MobileNet-V2 model obtained 94% F1 score on disease classification. An optimized CNN reached a score of 89% with less than 10 times less parameters. The implementation of both segmentation and classification models on low-powered device would allow for real-time disease detection at the press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.