As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Core outcome sets (COS) are necessary to ensure the systematic collection, metadata analysis and sharing the information across studies. However, development of an area-specific clinical research is costly and time consuming. ClinicalTrials.gov, as a public repository, provides access to a vast collection of clinical trials and their characteristics such as primary outcomes. With the growing number of COVID-19 clinical trials, identifying COSs from outcomes of such trials is crucial. This paper introduces a semi-automatic pipeline that can efficiently identify, aggregate and rank the COS from the primary outcomes of COVID-19 clinical trials. Using Natural language processing (NLP) techniques, our proposed pipeline successfully downloads and processes 5090 trials from all over the world and identifies COVID-19-specific outcomes that appeared in more than 1% of the trials. The top-of-the-list outcomes identified by the pipeline are mortality due to COVID-19, COVID-19 infection rate and COVID-19 symptoms.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.