As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Medical data science aims to facilitate knowledge discovery assisting in data, algorithms, and results analysis. The FAIR principles aim to guide scientific data management and stewardship, and are relevant to all digital health ecosystem stakeholders. The FAIR4Health project aims to facilitate and encourage the health research community to reuse datasets derived from publicly funded research initiatives using the FAIR principles. The ‘FAIRness for FHIR’ project aims to provide guidance on how HL7 FHIR could be utilized as a common data model to support the health datasets FAIRification process. This first expected result is an HL7 FHIR Implementation Guide (IG) called FHIR4FAIR, covering how FHIR can be used to cover FAIRification in different scenarios. This IG aims to provide practical underpinnings for the FAIR4Health FAIRification workflow as a domain-specific extension of the GoFAIR process, while simplifying curation, advancing interoperability, and providing insights into a roadmap for health datasets FAIR certification.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.