As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In spring 2020, as the COVID-19 pandemic is in its first wave in Europe, the University hospitals of Geneva (HUG) is tasked to take care of all Covid inpatients of the Geneva canton. It is a crisis with very little tools to support decision-taking authorities, and very little is known about the Covid disease. The need to know more, and fast, highlighted numerous challenges in the whole data pipeline processes. This paper describes the decisions taken and processes developed to build a unified database to support several secondary usages of clinical data, including governance and research. HUG had to answer to 5 major waves of COVID-19 patients since the beginning of 2020. In this context, a database for COVID-19 related data has been created to support the governance of the hospital in their answer to this crisis. The principles about this database were a) a clearly defined cohort; b) a clearly defined dataset and c) a clearly defined semantics. This approach resulted in more than 28 000 variables encoded in SNOMED CT and 1 540 human readable labels. It covers more than 216 000 patients and 590 000 inpatient stays. This database is used daily since the beginning of the pandemic to feed the “Predict” dashboards of HUG and prediction reports as well as several research projects.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.