As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Automatic classification of ECG signals has been a longtime research area with large progress having been made recently. However these advances have been achieved with increasingly complex models at the expense of model’s interpretability. In this research, a new model based on multivariate autoregressive model (MAR) coefficients combined with a tree-based model to classify bundle branch blocks is proposed. The advantage of the presented approach is to build a lightweight model which combined with post-hoc interpretability can bring new insights into important cross-lead dependencies which are indicative of the diseases of interest.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.