As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Burnout syndrome and depression are prevalent mental health problems in many societies today. Most existing methods used in clinical intervention and research are based on inventories. Natural Language Processing (NLP) enables new possibilities to automatically evaluate text in the context of clinical Psychology. In this paper, we show how affective word list ratings can be used to differentiate between texts indicating depression or burnout, and a control group. In particular, we show that depression and burnout show statistically significantly higher arousal than the control group.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.