As manufacturing industry seeks different strategies and technologies to respond to the ever-increasing demands in markets that prioritize versatility of products with low-volume productions, certain technologies and strategies gain more attraction and form higher acceptance levels among different sectors. Individual firms are driven by their market requirements. Various factors including product specification, assembly sequence, and manufacturing operations are central to the decisions that are made with respect to the type of technology to respond to market dynamics. Additive Manufacturing (AM) is one of the technology alternatives that has exhibited remarkable strengths in countering market disruptions. Although AM can be utilized along conventional technologies (i.e., subtracting and forming) in a hybrid context to combine advantages and offset weaknesses of each category, the arguments supporting its applications would need to be formulated rigorously to ensure investments are rightfully justified. Another alternative continuously investigated by companies is automation and more specifically, using robotics for various purposes e.g., operations like welding and painting, material handling, machine tending, etc. Both industrial robots and the applications that require a collaboration between humans and robots can be valid in this context. Considering advancements in AM and Automation and their potentials in increasing flexibility, expediting operations, and leveraging cost advantages, this paper explores how AM and automation in tandem could improve flexibility in productions. Results of this study can be used for proposing a conceptual model which will be further developed and then tested on industrial cases in future studies. While this study incorporates raw data about processing requirements in production that has been obtained via interviews with industrial companies, inputs about the technologies i.e., AM and robotics are derived from literature.