As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Many real world AI applications involve reasoning on both continuous and discrete variables, while requiring some level of symbolic reasoning that can provide guarantees on the system’s behaviour. Unfortunately, most of the existing probabilistic models do not efficiently support hard constraints or they are limited to purely discrete or continuous scenarios. Weighted Model Integration (WMI) is a recent and general formalism that enables probabilistic modeling and inference in hybrid structured domains. A difference of WMI-based inference algorithms with respect to most alternatives is that probabilities are computed inside a structured support involving both logical and algebraic relationships between variables. While some progress has been made in the last years and the topic is increasingly gaining interest from the community, research in this area is at an early stage. These aspects motivate the study of hybrid and symbolic probabilistic models and the development of scalable inference procedures and effective learning algorithms in these domains. This PhD Thesis embodies my effort in studying scalable reasoning and learning techniques in the context of WMI.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.