As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A susceptible-infected-susceptible (SIS) model with a nonlinear infection rate, a forecast model based on autoregressive integrated moving average (ARIMA), and a forecast model based on long short-term memory (LSTM) artificial neural networks were developed using the COVID-19 epidemic data from four countries (China, Italy, the United Kingdom, Germany, France, and Poland) to simulate and forecast the epidemic trends in these countries. The models were compared in terms of forecast errors, and the LSTM model was found to forecast virus transmission very well.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.