As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The goal of this study was to build a machine learning model for early prostate cancer prediction based on healthcare utilization patterns. We examined the frequency and pattern changes of healthcare utilization in 2916 prostate cancer patients 3 years prior to their prostate cancer diagnoses and explored several supervised machine learning techniques to predict possible prostate cancer diagnosis. Analysis of patients’ medical activities between 1 year and 2 years prior to their prostate cancer diagnoses using XGBoost model provided the best prediction accuracy with high F1 score (0.9) and AUC score (0.73). These pilot results indicated that application of machine learning to healthcare utilization patterns may result in early identification of prostate cancer diagnosis.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.