As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The possibility of postoperative speech dysfunction prediction in neurosurgery based on intraoperative cortico-cortical evoked potentials (CCEP) might provide a new basis to refine the criteria for the extent of intracerebral tumor resection and preserve patients’ quality of life. In this study, we aimed to test the quality of predicting postoperative speech dysfunction with machine learning based on the initial intraoperative CCEP before tumor removal. CCEP data were reported for 26 patients. We used several machine learning models to predict speech deterioration following neurosurgery: a random forest of decision trees, logistic regression, support vector machine with different types of the kernel (linear, radial, and polynomial). The best result with F1-score = 0.638 was obtained by a support vector machine with a polynomial kernel. Most models showed low specificity and high sensitivity (reached 0.993 for the best model). Our pilot study demonstrated the insufficient quality of speech dysfunction prediction by solely intraoperative CCEP recorded before glial tumor resection, grounding our further research of CCEP postresectional dynamics.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.