As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Population Health Management typically relies on subjective decisions to segment and stratify populations. This study combines unsupervised clustering for segmentation and supervised classification, personalised to clusters, for stratification. An increase in cluster homogeneity, sensitivity and positive predictive value was observed compared to an unlinked approach. This analysis demonstrates the potential for a cluster-then-predict methodology to improve and personalise decisions in healthcare systems.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.