As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Using Artificial Intelligence to Develop a Lexicon-Based African American Tweet Detection Algorithm to Inform Culturally Sensitive Twitter-Based Social Support Interventions for African American Dementia Caregivers
We extracted 3,291,101 Tweets using hashtags associated with African American-related discourse (#BlackTwitter, #BlackLivesMatter, #StayWoke) and 1,382,441 Tweets from a control set (general or no hashtags) from September 1, 2019 to December 31, 2019 using the Twitter API. We also extracted a literary historical corpus of 14,692 poems and prose writings by African American authors and 66,083 items authored by others as a control, including poems, plays, short stories, novels and essays, using a cloud-based machine learning platform (Amazon SageMaker) via ProQuest TDM Studio. Lastly, we combined statistics from log likelihood and Fisher’s exact tests as well as feature analysis of a batch-trained Naive Bayes classifier to select lexicons of terms most strongly associated with the target or control texts. The resulting Tweet-derived African American lexicon contains 1,734 unigrams, while the control contains 2,266 unigrams. This initial version of a lexicon-based African American Tweet detection algorithm developed using Tweet texts will be useful to inform culturally sensitive Twitter-based social support interventions for African American dementia caregivers.