As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Corporate bond default risk prediction is important for regulators, issuers and investors in the bond market. We propose a new approach for multi-class imbalanced corporate bond risk prediction based on the OVO-SMOTE-Adaboost ensemble model, which integrates the one-versus one (OVO) decomposition method, the synthetic minority over-sampling technique (SMOTE) and the Adaboost ensemble method. We categorize corporate bond default risk into three classes: very low default risk, relatively low default risk and high default risk, which is more scientific than the traditional two-class bond default risk, and carry out empirical experiments by respectively using DT, SVM, Logit and MDA as basic classifiers. Empirical results show that the prediction performance of the OVO-SMOTE-Adaboost (DT) model is overall better than the other three ensemble models such as OVO-SMOTE-Adaboost (SVM), OVO-SMOTE-Adaboost (Logit) and OVO-SMOTE-Adaboost (MDA). In addition, the OVO-SMOTE-Adaboost (DT) model greatly outperforms the OVO-SMOTE (DT) model, which is a single classifier model based on OVO and SMOTE without Adaboost. Therefore, the OVO-SMOTE-Adaboost (DT) model has satisfying performance of multi-class imbalanced corporate bond default risk prediction and is of great practical significance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.