As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The goal of this natural language processing (NLP) study was to identify patients in home healthcare with heart failure symptoms and poor self-management (SM). The preliminary lists of symptoms and poor SM status were identified, NLP algorithms were used to refine the lists, and NLP performance was evaluated using 2.3 million home healthcare clinical notes. The overall precision to identify patients with heart failure symptoms and poor SM status was 0.86. The feasibility of methods was demonstrated to identify patients with heart failure symptoms and poor SM documented in home healthcare notes. This study facilitates utilizing key symptom information and patients’ SM status from unstructured data in electronic health records. The results of this study can be applied to better individualize symptom management to support heart failure patients’ quality-of-life.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.