As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Legal case summarization is an important problem, and several domain-specific summarization algorithms have been applied for this task. These algorithms generally use domain-specific legal dictionaries to estimate the importance of sentences. However, none of the popular summarization algorithms use document-specific catchphrases, which provide a unique amalgamation of domain-specific and document-specific information. In this work, we assess the performance of two legal document summarization algorithms, when two different types of catchphrases are incorporated in the summarization process. Our experiments confirm that both the summarization algorithms show improvement across all performance metrics, with the incorporation of document-specific catchphrases.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.