As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
For the increasingly prominent problems of wind turbine maintenance, using edge cloud collaboration technology to construct wind farm equipment operation and maintenance framework is proposed, digital twin is used for fault prediction and diagnosis. Framework consists of data source layer, edge computing node layer, public or private cloud. Data source layer solves acquisition and transmission of wind turbine operation and maintenance data, edge computing node layer is responsible for on-site data cloud computing, storage and data transmission to cloud computing layer, receiving cloud computing results, device driving and control. The cloud computing layer completes the big data calculation and storage from wind farm, except that, based on real-time data records, continuous simulation and optimization, correct failure prediction mode, expert database and its prediction software, and edge node interaction and shared intelligence. The research explains that wind turbine uses digital twin to do fault prediction and diagnosis model, condition assessment, feature analysis and diagnosis, life prediction, combining with the probabilistic digital twin model to make the maintenance plan and decision-making method.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.