As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recommender systems play a vital role in e-commerce. It is a big source of a market that brings people from all over the world to a single place. It has become easy to access and reach the market while sitting anywhere. Recommender systems do a major role in the commerce mobility go smoothly easily as it is a software tool that helps in showing or recommending items based on user’s preferences by analyzing their taste. In this paper, we make a recommender system that would be specifically for music applications. Different people listen to different types of music, so we make note of their taste in music and suggest to them the next song based on their previous choice. This is achieved by using a popularity algorithm, classification, and collaborative filtering. Finally, we make a comparison of the built system for its effectiveness with different evaluation metrics.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.