As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We present a user acceptance study of a clinical decision support system (CDSS) for Type 2 Diabetes Mellitus (T2DM) risk prediction. We focus on how a combination of data-driven and rule-based models influence the efficiency and acceptance by doctors. To evaluate the perceived usefulness, we randomly generated CDSS output in three different settings: Data-driven (DD) model output; DD model with a presence of known risk scale (FINDRISK); DD model with presence of risk scale and explanation of DD model. For each case, a physician was asked to answer 3 questions: if a doctor agrees with the result, if a doctor understands it, if the result is useful for the practice. We employed a Lankton’s model to evaluate the user acceptance of the clinical decision support system. Our analysis has proved that without the presence of scales, a physician trust CDSS blindly. From the answers, we can conclude that interpretability plays an important role in accepting a CDSS.