As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Federated learning has a great potential to create solutions working over different sources without data transfer. However current federated methods are not explainable nor auditable. In this paper we propose a Federated data mining method to discover association rules. More accurately, we define what we consider as interesting itemsets and propose an algorithm to obtain them. This approach facilitates the interoperability and reusability, and it is based on the accessibility to data. These properties are quite aligned with the FAIR principles.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.