As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Deep cement mixing is an effective ground stabilization technique to control the ground movement on sand areas, and most of the projects have the problem of seepage. The cement slurry is in a fluid state before the initial setting time, the seepage may affect the diffusion process of cement slurry during this period. A hydro-mechanical approach is proposed to investigate the interaction between the seepage and the strength of cement-stabilized sand. The diffusion of the cement slurry under seepage is considered in this study and the diffusion process is simulated by the finite element method. According to the cement concentration at the end of the diffusion process, the strength of cement-stabilized sand can be predicted by combining an empirical formula. Simulation results examine that the existence of seepage and cracks can enhance the non-uniform diffusion process of cement slurry, and the actual strength distribution of the deep cement-mixed sand is far from the ideal state. This indicates that the influence of seepage on the strength of cement-stabilized sand should be considered in the design of projects.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.