As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, the fracture behavior of concrete with different initial notch lengths after freeze-thaw action was studied by using three-point bending test. Then, based on the boundary effect model, the parameters indicating the material discontinuity and inhomogeneity were introduced, and the maximum fracture load of the beam was used to determine the real tensile strength and fracture toughness of concrete under different freeze-thaw cycles. Results show that the tensile strength and fracture toughness of concrete are obviously reduced. Compared with the control specimens under indoor condition, the fracture parameters are reduced by more than 38% when the number of freeze-thaw cycles reached 75 times. In this paper, the tensile strength obtained based on the boundary effect model is significantly higher than the splitting tensile strength of concrete due to the incorporation of the discontinuity and non-uniformity of materials, and can more accurately reflect the deterioration and damage degree of concrete after freeze-thaw action.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.