As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Risk management is an important link in tax administration. From China’s taxation practice, risk identification has become the weakness of tax management. With the complexity of massive data and the secrecy of modern transactions, traditional tax risk identification can no longer adapt to the development of the times. In the past, most risk researches focused on the basic machine learning stage. There are gaps in the application of deep learning in tax risk management. Based on the tax risk management indicators, this paper took the real estate industry as an example. We used convolutional neural network (CNN) to construct a tax risk prediction model. The experiment shows that a tax risk prediction model based on CNN has higher accuracy in tax risk identification and has a stronger ability to process tax data. The model has a certain reference value for tax authorities to reduce tax risk and tax loss.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.