As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this study, we investigate faecal microbiota composition, in an attempt to evaluate performance of classification algorithms in identifying Inflammatory Bowel Disease (IBD) and its two types: Crohn’s disease (CD) and ulcerative colitis (UC). From many investigated algorithms, a random forest (RF) classifier was selected for detailed evaluation in three-class (CD versus UC versus nonIBD) classification task and two binary (nonIBD versus IBD and CD versus UC) classification tasks. We dealt with class imbalance, performed extensive parameter search, dimensionality reduction and two-level classification. In three-class classification, our best model reaches F1 score of 91% in average, which confirms the strong connection of IBD and gastrointestinal microbiome. Among most important features in three-class classification are species Staphylococcus hominis, Porphyromonas endodontalis, Slackia piriformis and genus Bacteroidetes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.