As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The relevance of this study lies in improvement of machine learning models understanding. We present a method for interpreting clustering results and apply it to the case of clinical pathways modeling. This method is based on statistical inference and allows to get the description of the clusters, determining the influence of a particular feature on the difference between them. Based on the proposed approach, it is possible to determine the characteristic features for each cluster. Finally, we compare the method with the Bayesian inference explanation and with the interpretation of medical experts [1].
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.