As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Excess weight and obesity are indicators of an unhealthy or harmful accumulation of fat that can be dangerous to health. Body mass index (BMI) refers to height-to-weight radio and is often used to identify overweight and obesity in adults. Although BMI is commonly used to diagnose obesity and overweight, it is ineffective in differentiating between high muscle mass and elevated body fat mass. Body fat percentage (BF%) is one of the best predictors of obesity because it quantifies adipose tissue. The Deurenberg equation is among the indirect methods to measure BF%; it uses BMI, age, and sex as parameters to calculate the BF%. Machine learning techniques demonstrated to be a good classifier of overweight, obesity, and diseases related to insulin resistance and metabolic syndrome. This study intends to evaluate anthropometric parameters as classifiers of BF% alteration using support vector machines and the Deurenberg equation for BF% estimation. The database used consisted of 1978 individuals with 24 different anthropometric measurements. The results suggest the SVM as a suitable technique for classifying individuals with normal and abnormal BF% values. Accuracy, F1 score, PPV, NPV, and sensitivity were above 0.8. Besides, the specificity value is below 0.7, which indicates that false positives may occur. As future work, this research intends to apply neural networks as a classification technique.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.