As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
High throughput sequencing technologies have facilitated an outburst in biological knowledge over the past decades and thus enables improvements in personalized medicine. In order to support (international) medical research with the combination of genomic and clinical patient data, a standardization and harmonization of these data sources is highly desirable. To support this increasing importance of genomic data, we have created semantic mapping from raw genomic data to both FHIR (Fast Healthcare Interoperability Resources) and OMOP (Observational Medical Outcomes Partnership) CDM (Common Data Model) and analyzed the data coverage of both models. For this, we calculated the mapping score for different data categories and the relative data coverage in both FHIR and OMOP CDM. Our results show, that the patients genomic data can be mapped to OMOP CDM directly from VCF (Variant Call Format) file with a coverage of slightly over 50%. However, using FHIR as intermediate representation does not lead to further information loss as the already stored data in FHIR can be further transformed into OMOP CDM format with almost 100% success. Our findings are in favor of extending OMOP CDM with patient genomic data using ETL to enable the researchers to apply different analysis methods including machine learning algorithms on genomic data.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.