As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper a machine learning model for automatic detection of abnormalities in electroencephalography (EEG) is dissected into parts, so that the influence of each part on the classification accuracy score can be examined. The most successful setup of several shallow artificial neural networks aggregated via voting results in accuracy of 81%. Stepwise simplification of the model shows the expected decrease in accuracy, but a naive model with thresholding of a single extracted feature (relative wavelet energy) is still able to achieve 75%, which remains strongly above the random guess baseline of 54%. These results suggest the feasibility of building a simple classification model ensuring accuracy scores close to the state-of-the-art research but remaining fully interpretable.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.