As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Learning event models from videos has applications ranging from abnormal event detection to content based video retrieval. Relational learning techniques such as Inductive Logic Programming (ILP) hold promise for building such models, but have not been successfully applied to the very large datasets which result from video data. In this paper we present a novel supervised learning framework to learn event models from large video datasets (~2.5 million frames) using ILP. Efficiency is achieved via the learning from interpretations setting and using a typing system. This allows learning to take place in a reasonable time frame with reduced false positives. The experimental results on video data from an airport apron where events such as Loading, Unloading, Jet-Bridge Parking etc are learned suggests that the techniques are suitable to real world scenarios.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.