As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Racism is an unequal treatment based on race, color, origin, ethnicity or religion. It is often associated with rejection, inequality, and value judgment. A racist act, whether conscious or unconscious, goes beyond insult and aggression and leaves a devastating psychological effect on the victim. Although almost all laws around the world punish racist acts and speech, racist messages are on the rise on social networks. As a result, there is a strong need for reliable and accurate detectors of racist comments to identify the offenders and take appropriate punitive action against them. In this paper, we propose a model for the detection of racist statements in text messages by Bidirectional Gated Recurrent Units. For the word representation, we use different word embedding techniques, namely Word2Vec and GloVe. We show that this combination works well and provides a good level of detection. At the end of our study, we will suggest new horizons to improve the quality of our model.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.