As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The last decades have witnessed significant advancements in terms of data generation, management, and maintenance. This has resulted in vast amounts of data becoming available in a variety of forms and formats including RDF. As RDF data is represented as a graph structure, applying machine learning algorithms to extract valuable knowledge and insights from them is not straightforward, especially when the size of the data is enormous. Although Knowledge Graph Embedding models (KGEs) convert the RDF graphs to low-dimensional vector spaces, these vectors often lack the explainability. On the contrary, in this paper, we introduce a generic, distributed, and scalable software framework that is capable of transforming large RDF data into an explainable feature matrix. This matrix can be exploited in many standard machine learning algorithms. Our approach, by exploiting semantic web and big data technologies, is able to extract a variety of existing features by deep traversing a given large RDF graph. The proposed framework is open-source, well-documented, and fully integrated into the active community project Semantic Analytics Stack (SANSA). The experiments on real-world use cases disclose that the extracted features can be successfully used in machine learning tasks like classification and clustering.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.