As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper we tackle the problem of coordinating multiple decentralised agents with continuous state variables. Specifically we propose a hybrid approach, which combines the max-sum algorithm with continuous non-linear optimisation methods. We show that, for problems with acyclic factor graph representations, for suitable parameter choices and sufficiently fine state space discretisations, our proposed algorithm converges to a state with utility close to the global optimum. We empirically evaluate our approach for cyclic constraint graphs in a multi-sensor target classification problem, and compare its performance to the discrete max-sum algorithm, as well as a non-oordinated approach and the distributed stochastic algorithm (DSA). We show that our hybrid max-sum algorithm outperforms the non-coordinated algorithm, DSA and discrete max-sum by up to 40% in this problem domain. Furthermore, the improvements in outcome over discrete max-sum come without significant increases in running time nor communication cost.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.